导航栏

×
申请书 > 入党申请书 > 导航

2024初一数学教案大全(经典五篇)

作为一名教职工,常常要写一份优秀的教案,借助教案可以更好地组织教学活动。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的初一数学教案,仅供参考,大家一起来看看吧。

2024初一数学教案大全 篇1

教学目标

1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2,能区分两种不同意义的量,会用符号表示正数和负数;

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点:正确区分两种不同意义的量。

知识重点:两种相反意义的量

教学过程:(师生活动)设计理念

设置情境

引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习教科书第5页练习

小结与作业

课堂小结围绕下面两点,以师生共同交流的方式进行:

1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

本课教育评注(课堂设计理念,实际教学效果及改进设想)

密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

2024初一数学教案大全 篇2

初一上册数学教案,欢迎各位老师和学生参考!

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的'绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三.例题精讲

例1. 求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四.练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是0.37的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

P25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

2024初一数学教案大全 篇3

【教学内容】

第二章 2.1 正数与负数 2.2 数轴

【教学目标】

1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】

一、本讲主要学习内容

1、负数的意义及表示 2、零的位置和地位

3、有理数的分类 4、数轴概念及三要素

5、数轴上数与点的对应关系 6、数轴上数的比较大小

其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。

下面概述一下这六点的主要内容

1、负数的意义及表示

把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位

零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

3、有理数的分类

正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。

正整数

整数 零 正有理数

有理数 负整数 或 有理数 零

分数 正分数 负有理数

负分数

2024初一数学教案大全 篇4

教学内容分析

教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。

根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。

教学目标

知识目标

知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。

能力目标

通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。

情感目标

经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。

教学重点

三角形三边关系的实验与探究

教学难点

三角形三边关系的探究过程。

教学关键

使学生理解三角形边的关系

教学准备

课件、三根小棒、三边关系试验报告单每组四根小棒

教学方法

自主探究小组讨论

课程类型

学科课程

教学过程

活动的组织与实施(含教师活动和学生活动)

设计意图

时间分配

一、复习旧知,导入新课

我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

复习旧的知识,使新旧知识之间有很好的连接

2分钟

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)

1、学法指导师:你们的这些猜想是否正确,三角形的'三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流

2、动手操作,寻找规律(师巡视,并指导)

3、交流汇报,探究规律。

师:哪个小组愿意来汇报。小组上台展示,

3厘米、8厘米、10厘米能

3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。

(课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8重合了不能

师:是这样吗?(课件演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。

3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、运用结论,加深理解

师:我们已经知道三角形的三边关系,下面让我们来判断几道题目

1、快速判断。

3cm、5cm、() 4cm

7cm、4cm、() 2cm

6cm、3cm、() 1cm

2cm、3cm、() 3cm

师:为什么围不成?你是怎么判断的?

2、出示P82例3图

这是小明上学的路线图,同学们仔细看一看,他可以怎样走?

3、这几条路中,哪条最近?这是为什么呢?

老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力

通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象

3分钟5分钟7分钟3分钟5分钟10分钟5分钟

板书设计

三角形边的关系两边之和大于第三边

教学反思

本节课巩固应用部分的三个环节,是从学生的学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。

以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。

2024初一数学教案大全 篇5

一、教学目标

(一)知识教学点

1.了解;方程算术解法与代数解法的区别。

2.掌握:代数解法解简易方程。

(二)能力训练点

1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。

2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

(三)德育渗透点

1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

2.渗透化“未知”为“已知”的化归思想。

(四)美育渗透点

通过用新的方法解简易方程,使学生初步领略数学中的方法美。

二、学法引导

1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

2.学生学法:识记→练习反馈

三、重点、难点、疑点及解决办法

1.重点:代数解法解简易方程。

2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

3.疑点:代数解法解简易方程的依据。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片。

六、师生互动活动设计

教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

七、教学步骤

(一)创设情境,复习导入

(出示投影1)

引例:班上有37名同学,分成人数相等的.两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

师:该问题如何解决呢?请同学们考虑好后写在练习本上.

学生活动:解答问题,一个学生板演.

师生共同订正,对照板演学生的做法,师问:有无不同解法?

学生活动:回答问题,一个学生板演,其他学生比较两种解法.

问;这两种解法有什么不同呢?

学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.

[板书]1.5简易方程

(二)探索新知,讲授新课

师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

学生活动:踊跃举手,回答问题。

[板书] 含有未知数的等式叫方程

接问:你还知道关于方程的其他概念吗?

学生活动:积极思考并回答。

[板书] 方程的解;解方程

追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,

师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

[板书]

学生活动:相互讨论达成共识(合理。因把x=5 代入方程3x+9=24 ,左边=右边,所以x=5是方程的解)

【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

(三)尝试反馈,巩固练习

例1 解方程(x/2)-5=11

问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

学生活动:思考并回答.(师板书)

问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

学生活动:思考并回答(师板书)

解:方程两边都加上5,得

(x/2)-5+5=11+5

x/2=16

(x/2)*2=16*2

x=32

问:这个结果正确吗?请同学们自己检验.

学生活动:练习本上检验并回答问题.(正确)

师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

学生活动:回答这两个问题.

文章来源:http://m.swy7.com/a/5252761.html

更多
L

猜你喜欢

更多
N

最新更新

更多
H

热门推荐