导航栏

×
申请书 > 入党申请书 > 导航

高中数学集合教材分析(汇总七篇)

作为一无名无私奉献的教育工作者,通常需要准备好一份说课稿,借助说课稿可以让教学工作更科学化。那么你有了解过说课稿吗?以下是小编收集整理的高中数学集合的说课稿,希望对大家有所帮助。

高中数学集合教材分析 篇1

各位老师:

大家好,我是08级数学(2)班的xx,今天我要向大家介绍的课题是集合的基本运算,首先,我对本节教材进行简要的分析;

一、 教材分析

集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。

根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:

二、教学目标

1、知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集的表示法以及求解两个集合并集与交集的方法。

2、 过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。

3、 情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。

根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,

三,教学重点与难点

重点:并集与交集的概念的理解,以及并集与交集的求解。

难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。

为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;

四、 教学方法与学法

本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。

那么在本节课中我的教学过程是这样设计的,

五、 教学过程

1、复习旧知、引入主题

问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?

由此引入了本节课的课; 集合的基本运算,并让学生观察这样三个集合

集合A={1,3,5}, B={2,4,6}, C={1,2,3,4,5,6} 并让学生思考集合A、集合B并与集合C之间有什么关系?

通过对以上集合的观察、比较、分析、学生容易得出集合C里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会 类比这个例子让学生自己归纳出并集中“或”的三层意思)

引入并集的符号“∪ ”,并用数学语言描述A与B的并集:或}介绍Veen图

通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的'互易性确定的,由此复习了集合的互易性,再对例5的讲解,让学生会用数轴来求解并集,学生学习了并集含义之后,我会让学生思考这样一个问题

问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:

A={1,2,3} B={3,,4,5} C={3} 让学生类比并集的方式归纳出它们之间的关系:集合C里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,引导学生发现交集里面的关键词“且”,介绍交集的符号“∩”用数学语言表示交集:且};介绍Veen图

对书上例6 的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,

例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,

让学生完成书上的练习,

1、 课堂练习,反馈信息。(P11,1、2题)

在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。

2、 课堂小结,自我评价。

通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。

3、 作业布置,反馈矫正。(P12,6、7)

六、 板书设计

集合的基本运算

一、并集 例4, 引入

1, 例5, A={ }

2, 例6, B={ }

高中数学集合教材分析 篇2

一、教材分析

1、教材所处的地位和作用

奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。

2、学情分析

从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

3、教学目标

基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

【知识与技能】

1)能确定一些简单函数的奇偶性。

2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

【过程与方法】

经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。

【情感、态度与价值观】

经过自主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上到达了预期效果。

4、教学重点和难点

重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

难点:奇偶性概念的数学化提炼过程。

由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。

二、教法与学法分析

1、教法

根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的进取状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。

2、学法

让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。

三、教学过程

具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。

(一)设疑导入、观图激趣

由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。

用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

(二)指导观察、构成概念

在这一环节中共设计了2个探究活动。

探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。

在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

(三)学生探索、领会定义

探究3下列函数图象具有奇偶性吗?

设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

(四)知识应用,巩固提高

在这一环节我设计了4道题

例1确定下列函数的奇偶性

选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。

例1设计意图是归纳出确定奇偶性的步骤:

(1)先求定义域,看是否关于原点对称;

(2)再确定f(-x)=-f(x)还是f(-x)=f(x)。

例2确定下列函数的奇偶性:

例3确定下列函数的奇偶性:

例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?

例4(1)确定函数的奇偶性。

(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

例4设计意图加强函数奇偶性的几何意义的应用。

在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。

(五)总结反馈

在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。

(六)分层作业,学以致用

必做题:课本第36页练习第1-2题。

选做题:课本第39页习题1、3A组第6题。

思考题:课本第39页习题1、3B组第3题。

设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。

高中数学集合教材分析 篇3

一、说教材

《集合》是三年级上册数学广角的内容,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。在本节课前,学生虽然已经学习过分类的思想方法,但《集合》这部分内容比较抽象,在这里只是让学生通过生活中容易理解的例子去初步体会集合思想,为以后继续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。

二、说教学目标

1、结合实例,通过小组活动,经历维恩图的产生过程,了解简单的集合知识,初步感受它的意义。

2、结合具体情境,通过自主探究,交流讨论,运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。

三、说教学重、难点

教学重点:经历集合图的产生过程,利用集合的思想方法解决有重复部分的问题。

教学难点:体会集合概念的含义及集合的运算。

四、说教法

本节课白老师主要采用游戏法、直观演示法、讲解法、师生合作探究法,以学生为主体,老师引导学生一步步的深入探究,进而将问题解决,达到教学目标。

五、说学法

学生在老师的引导下,通过游戏、自主探究、独立思考、小组合作、动手操作等方法来理解集合各部分表示的意义,根据集合图直观形象的解决问题。

六、说教学过程

1、白老师为了提高学生学习的兴趣和的积极性,为学生营造了轻松愉悦的学习氛围,利用脑筋急转弯儿子与爸爸,来激发学生的学习兴趣,加强学生对集合图的理解。

2、在游戏中引起矛盾冲突,提出问题,使学生的思维世界中出现碰撞,便产生了求知的`火花,从而主动探索解决问题的办法,领悟问题存在的根源——重复。

3、借助呼啦圈套小朋友的方法,演示出集合圈的知识,能够帮助学生形象直观地理解集合图各部分所表示的意义。

4、借助学生比较感兴趣的的运动会两个项目的报名情况,让学生充分探究集合的知识及解决问题的计算方法。

5、小组合作,利用已有的知识经验来设计集合图,进一步加深对集合知识的理解和认识。

6、在解决问题的同时,注重学生思维的拓展,让学生考虑到集合与集合之间关系的多样性使所学知识得到了延伸。

总之,数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在学习活动的参与中,真正的做到了自主探索、不断创新,体验到了数学学习的快乐与成功。

高中数学集合教材分析 篇4

【教材分析】

重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。

【学情分析】

学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。

【教学目标】

1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的`过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。

2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的`问题。

【教学重难点】

重点:理解集合图的.各部分意义,能用集合图分析生活中简单的有重复部分的问题。

难点:借助直观图解决集合问题。

【教学准备】

课件。

【教学流程】

【情境导入】

1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?

2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?

师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)

【探究新知】

1.巧妙设疑,直观感悟,初步感知重复现象。

(1)调查本班学生参加数学小组、作文小组的情况。

(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。

问题:当有同学既参加数学小组,又参加作文小组时怎么站?

引出问题,学生想办法解决。

(3)说说呼啦圈里各部分学生所表示的意思。

2.自主绘图,加深理解。

3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。

师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!

4.读图训练。教师引导学生用准确的语言表述图中的各种信息。

5.观察图表,算法探究。

师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?

学生回答列式。

6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。

【巩固应用】

教材第106页练习二十三第1、2、3题。

【课堂小结】

通过今天的学习,你有什么收获?

高中数学集合教材分析 篇5

教学目标:

1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。

2.数学思考目标:

能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。

3.问题解决目标:

(1).能借助直观图,利用集合的思想方法解决简单的实际问题。

(2).渗透多种方法解决重叠问题的意识。

4.情感态度目标:

(1)培养学生善于观察、善于思考的能力。

(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。

教学重难点:

1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。

2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。

教具准备:

多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。

学具准备:

常规学具、彩笔、作业本。

教学过程:

一、创设情境,引入新课

1.激情导入,引出例题

师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)

师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)

师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?

设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。

三一班某小组同学“献爱心”的情况:

生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。

生2:我发现捐款的有5人,捐物的有6人。

师:你能提出一个数学问题吗?

生1:捐款的比捐物的少几人?

生2:捐物的比捐款的.多几人?

生3:捐款的和捐物的一共多少人?

2.设问质疑,引发冲突

师:参加捐款捐物的一共有多少人?如何解答?

生:11人、10人、9人。

师:这么一个简单的问题怎么会有这么多不同的答案呢?

生:里面的同学重复了。

师:哪里重复了?(李彤和任一,课件闪动。)

看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)

师:下面请同学们分组讨论,如何去调整表格?

二、小组交流,探究新知

圈一圈。

师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?

设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。

探究韦恩图

师:为了让大家看的更清楚、更直观,请看大屏幕:

(1)取消表格。

表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。

(2)捐款的移到左边,捐物的移到右边。

(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)

设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。

(4)介绍韦恩图。

师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)

设计意图:介绍课外知识,拓宽知识视野。

师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的`表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。

列式计算。

(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。

师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。

(2)计算板演。

方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)

讨论:为什么要减2?(因为有2个人既捐款又捐物)

方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)

设计意图:发展学生思维,体现方法多样化。

三、实践应用,巩固内化

三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。

(1)既参加数学竞赛又参加作文竞赛的有几人?

(2)只参加数学竞赛的有几人?

(3)只参加作文竞赛的有几人?

设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。

四、总结质疑,自我提高

1.学生说这节课的收获并质疑

2.互相评价、共同提高(自评互评生评师师评生)

师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。

引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:

1.获得红花奖励的指哪些同学?

2.获得红星奖励的指哪些同学?

3.既获得红花奖励又获得红星奖励的指哪些同学?

4.只获得红花奖励的指哪些同学?

5.只获得红星奖励的指哪些同学?

6.获得红花奖励和红星奖励的一共有多少人?

设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。

五、作业布置,知识升华

我是小小设计师。(课后作业)

请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!

设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。

高中数学集合教材分析 篇6

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

高中数学集合教材分析 篇7

说课的题目是《集合的含义与表示》,下面将从教材分析、学情分析、教学目标、教法学法、教学过程、教学反思六个方面说一下对这节课的教学研究。

一、教材分析

教学内容:本节课选自《普通高中课程标准实验教科书》人教A版必修1第一章第一节《集合的含义与表示》,教学安排为1课时。

重点难点:在教学中,把集合的含义与表示方法作为本节课的重点,而把集合表示方法的恰当选择作为教学难点。

二、学情分析

对于刚升入高中的学生来说,基础知识相对扎实,具备一定的逻辑思维能力;从认知情况来看,对于生活实例,他们的感性大于理性,抽象概括能力较弱,但是学生们富有好奇心,充满求知欲,愿意接触新事物。哈佛大学校长陆登庭曾说过“如果没有好奇心和求知欲做动力,就不可能产生对社会具有巨大价值的发明创造。”因此对学生的好奇心和求知欲加以引导,才能让学生的学习更富创造性。

三、教学目标

知识与技能:要求学生理解集合的含义,元素的特征;元素与集合的关系,熟练掌握常用数集的记号,以及掌握集合的表示方法。

过程与方法:教学过程中,应用自然语言与集合语言描述数学对象,与学生一道归纳出集合的含义,掌握从具体到抽象,从特殊到一般的研究方法。

情感态度价值观:使学生感受数学的简洁美与和谐统一美,培养学生独立思考、敢于创新、勇于探索的科学精神,激发学生学习数学的兴趣,从而实现情感、态度、价值观方面的培养目标。

四、教法学法

由于本节课是高中数学的起始课,而且概念较多,所以在教学过程中我决定从身边实例出发,通过老师引导,小组讨论、自主探究等多种方式逐渐培养学生的抽象概括能力;为了达到预期的教学效果,在学法指导方面,使教学过程活动化、学习过程自主化、获取知识的过程体验化,将教学内容转化为学生自主探究的活动过程,体现新课程改革倡导的自主学习的理念。

五、教学过程

(一)创设情境、导入新课。我以老师走进教室关上门,教室内的所有人能否组成集合作为引入,这样生活化的场景让学生感到亲切,集中了注意力,同时抛出问题,为后继教学埋下伏笔,接着介绍集合论的创始人,德国数学家康托,这样处理既让学生了解了相关的数学背景,同时又提高了学生的学习兴趣。

(二)类比归纳、理解含义。此处我举得五个例子,既有数字又有图形,还有日常生活中的人和物,这些实例贴近学生生活,更进一步抓住了学生的心理,调动了学生学习的积极性,紧接着通过老师引导,与学生一起归纳出集合的含义,并且让学生对五个例子进行解释,加深对集合含义的理解。

(三)合作探究、把握特征。此处我设计的三个实例依然来自于我们的生活,充分体现了数学来自于生活,又为生活服务的思想。通过教学过程活动化,知识过程体验化,将教学内容转化为老师引导下学生自主探究的活动过程,以下是我的教学实录。在学生已经了解元素特征的情况下趁热打铁,给出以下4个例子。让学生稍加思考之后进行回答,进一步加深对集合中元素特征的理解。数学具有形式上的简洁美,在此处明确元素与集合的关系,并给出相应的符号表示,以及常用数集的记号。由于这些符号以后经常会用到,在课堂上理解的基础上更需要课下的强化记忆,达到“从来都不用想起,永远也不会忘记”的效果。

(四)列举描述、恰当选择。集合语言是现代数学的基本语言,通过学习使学生学会使用最基本的集合语言表示有关数学对象,体会用集合语言表达数学内容的简洁性、准确性,在此给出了使用列举法表示集合的具体方法,为了巩固授课效果,在这个知识点后面设计了一道练习题,设计这道题主要是为了培养学生的应用意识,激发学生的求解兴趣,同时还可以突破本节课的教学重点。

(五)实战演练、拓展提升。在这里我设计了两道用两种方法表示集合的题目,这样设计首先是想考查学生对列举法、描述法掌握的情况,也希望通过两种表示方法的.练习,更好地把握列举法和描述法各自的特点。引导学生讨论应当如何根据实际问题选择恰当的集合表示方法。通过这道题目的练习,既巩固了所学知识点,又培养了学生一题多解灵活运用的数学思维能力。

(六)归纳方法、课后延伸。在这个环节,我首先引导大家对列举法和描述法进行了归纳,指明其特点并让大家根据情况进行恰当选择;小结部分采用学生回忆—归纳—总结的方式把知识点串联起来,对本节课的知识形成系统而全面的认识;在作业布置方面,一道必做题,巩固消化知识;一道选做题,课外拓展延伸,体现了作业的巩固性和发展性原则。我的板书设计简明直观,体现了知识间的内在联系,能让学生更好地把握知识要点。

六、教学反思

本节课通过引入贴近生活的实例,激发了学生的学习兴趣,并产生了感性认识;通过分层次地不断提问、启发、引导,触发了学生的理性思考,并让学生通过活动加深了对知识的理解;通过及时有效的点拨,使知识得到巩固,能力得以提升。苏霍姆林斯基曾说过:“人的心里有一种根深蒂固的需要——总想感到自己是发现者,研究者,探寻者。正是这种需要,引领着学生进入知识的殿堂,真正感受到数学的无穷魅力!”

文章来源:http://m.swy7.com/a/5254764.html

更多
L

猜你喜欢

更多
N

最新更新

更多
H

热门推荐